C#,码海拾贝(31)——约化“对称矩阵“为“对称三对角阵“的“豪斯荷尔德Householder变换法“之C#源代码,《C#数值计算算法编程》源代码升级改进版
发布人:shili8
发布时间:2023-12-05 23:56
阅读次数:88
csharp
using System;
namespace HouseholderTransformation
{
class Program
{
static void Main(string[] args)
{
// 定义对称矩阵
double[] symmetricMatrix = {
{ 4 1 -2 }
{ 1 2 3 }
{ -2 3 5 }
};
// 获取矩阵的阶数
int n = symmetricMatrix.GetLength(0);
// 初始化单位矩阵
double[] identityMatrix = new double[n n];
for (int i = 0; i < n; i++)
{
identityMatrix[i i] = 1;
}
// 对称矩阵约化为对称三对角阵
for (int k = 0; k < n - 2; k++)
{
double[] x = new double[n - k];
double[] v = new double[n - k];
double[] w = new double[n - k];
for (int i = k; i < n; i++)
{
x[i - k] = symmetricMatrix[i k];
}
double normX = 0;
for (int i = 0; i < n - k; i++)
{
normX += x[i] * x[i];
}
normX = Math.Sqrt(normX);
v[0] = x[0] + Math.Sign(x[0]) * normX;
for (int i = 1; i < n - k; i++)
{
v[i] = x[i];
}
double normV = 0;
for (int i = 0; i < n - k; i++)
{
normV += v[i] * v[i];
}
normV = Math.Sqrt(normV);
for (int i = 0; i < n - k; i++)
{
v[i] /= normV;
}
for (int i = 0; i < n - k; i++)
{
for (int j = 0; j < n - k; j++)
{
w[i] += v[j] * symmetricMatrix[k + j k + i];
}
}
for (int i = 0; i < n - k; i++)
{
for (int j = 0; j < n - k; j++)
{
symmetricMatrix[k + i k + j] -= 2 * v[i] * w[j];
}
}
for (int i = 0; i < n - k; i++)
{
for (int j = 0; j < n; j++)
{
w[i] = 0;
for (int l = 0; l < n - k; l++)
{
w[i] += v[l] * identityMatrix[k + l j];
}
}
}
for (int i = 0; i < n - k; i++)
{
for (int j = 0; j < n; j++)
{
identityMatrix[k + i j] -= 2 * v[i] * w[j];
}
}
}
// 输出对称三对角阵
Console.WriteLine(对称三对角阵:);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
Console.Write(symmetricMatrix[i j] + );
}
Console.WriteLine();
}
}
}
}
以上是C#实现的对称矩阵约化为对称三对角阵的豪斯荷尔德变换法的源代码。在这段代码中,我们首先定义了一个对称矩阵,并使用豪斯荷尔德变换法将其约化为对称三对角阵。最后输出了约化后的对称三对角阵。

