C#,码海拾贝(23)——线性方程组求解的复系数方程组的全选主元高斯消去法之C#源代码,《C#数值计算算法编程》源代码升级改进版
发布人:shili8
发布时间:2023-08-06 10:30
阅读次数:84
以下是使用C#实现全选主元高斯消去法求解复系数方程组的代码示例:
csharp
using System;
namespace LinearEquationSolver
{
class Program
{
static void Main(string[] args)
{
// 定义复系数方程组的系数矩阵和常数向量
Complex[] coefficients = new Complex[]
{
{ new Complex(2 1) new Complex(3 -2) new Complex(1 3) }
{ new Complex(1 -1) new Complex(2 2) new Complex(3 -1) }
{ new Complex(3 2) new Complex(1 1) new Complex(2 -2) }
};
Complex[] constants = new Complex[]
{
new Complex(4 3)
new Complex(2 -1)
new Complex(1 2)
};
// 求解方程组
Complex[] solutions = SolveLinearEquations(coefficients constants);
// 输出结果
Console.WriteLine(Solution:);
for (int i = 0; i < solutions.Length; i++)
{
Console.WriteLine($x{i + 1} = {solutions[i]});
}
}
static Complex[] SolveLinearEquations(Complex[] coefficients Complex[] constants)
{
int n = constants.Length;
Complex[] solutions = new Complex[n];
// 高斯消去法
for (int k = 0; k < n - 1; k++)
{
// 选取主元
int pivotRow = k;
int pivotColumn = k;
Complex pivotValue = coefficients[k k];
for (int i = k; i < n; i++)
{
for (int j = k; j < n; j++)
{
if (coefficients[i j].Magnitude > pivotValue.Magnitude)
{
pivotRow = i;
pivotColumn = j;
pivotValue = coefficients[i j];
}
}
}
// 交换行
if (pivotRow != k)
{
for (int j = k; j < n; j++)
{
Complex temp = coefficients[k j];
coefficients[k j] = coefficients[pivotRow j];
coefficients[pivotRow j] = temp;
}
Complex tempConstant = constants[k];
constants[k] = constants[pivotRow];
constants[pivotRow] = tempConstant;
}
// 交换列
if (pivotColumn != k)
{
for (int i = 0; i < n; i++)
{
Complex temp = coefficients[i k];
coefficients[i k] = coefficients[i pivotColumn];
coefficients[i pivotColumn] = temp;
}
}
// 消元
for (int i = k + 1; i < n; i++)
{
Complex factor = coefficients[i k] / coefficients[k k];
constants[i] -= factor * constants[k];
for (int j = k; j < n; j++)
{
coefficients[i j] -= factor * coefficients[k j];
}
}
}
// 回代求解
solutions[n - 1] = constants[n - 1] / coefficients[n - 1 n - 1];
for (int i = n - 2; i >= 0; i--)
{
Complex sum = constants[i];
for (int j = i + 1; j < n; j++)
{
sum -= coefficients[i j] * solutions[j];
}
solutions[i] = sum / coefficients[i i];
}
return solutions;
}
}
// 复数类
class Complex
{
public double Real { get; set; }
public double Imaginary { get; set; }
public Complex(double real double imaginary)
{
Real = real;
Imaginary = imaginary;
}
public double Magnitude
{
get { return Math.Sqrt(Real * Real + Imaginary * Imaginary); }
}
public static Complex operator +(Complex a Complex b)
{
return new Complex(a.Real + b.Real a.Imaginary + b.Imaginary);
}
public static Complex operator -(Complex a Complex b)
{
return new Complex(a.Real - b.Real a.Imaginary - b.Imaginary);
}
public static Complex operator *(Complex a Complex b)
{
double real = a.Real * b.Real - a.Imaginary * b.Imaginary;
double imaginary = a.Real * b.Imaginary + a.Imaginary * b.Real;
return new Complex(real imaginary);
}
public static Complex operator /(Complex a Complex b)
{
double denominator = b.Real * b.Real + b.Imaginary * b.Imaginary;
double real = (a.Real * b.Real + a.Imaginary * b.Imaginary) / denominator;
double imaginary = (a.Imaginary * b.Real - a.Real * b.Imaginary) / denominator;
return new Complex(real imaginary);
}
public override string ToString()
{
return ${Real} + {Imaginary}i;
}
}
}
这段代码实现了全选主元高斯消去法来求解复系数方程组。首先,定义了一个复数类`Complex`,用于表示复数并实现复数的加减乘除运算。然后,在`SolveLinearEquations`方法中,使用高斯消去法对系数矩阵进行消元,并通过回代求解得到方程组的解。最后,在`Main`方法中,定义了一个复系数方程组的系数矩阵和常数向量,并调用`SolveLinearEquations`方法求解方程组,并输出结果。
这段代码是《C#数值计算算法编程》源代码的升级改进版,通过使用复数类来处理复数运算,使得代码更加简洁和易读。

